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The Serializability of Concurrent Database Updates*

by

Christos H. Papadimitriou
Massachusetts Institute of Technology

Abstract

A sequence of interleaved user transactions in a database system may not
be gerializable, i.e., equivalent to some sequential execution of the
individual transactions. Using a simple transaction model we show that
recognizing the transaction histories which are serializable is an NP-
complete problem. We therefore introduce several efficiently recognizable
subclasses of the class of serializable histories; most of these sub-
classes correspond to serializability principles existing in the
literature and used in practice. We also propose two new principles

which subsume all previously known ones. We give necessary and sufficient
conditions for a class of histories to be the output of an efficient
history scheduler; these conditions imply that there can be no efficient
scheduler that outputs all of serializable histories, and also that all
subclasses of serializable histories studied above have an efficient
scheduler. Finally, we show how our results can be extended to far more
general transaction models, to transactions with partly interpreted

functions, and to distributed database systems.
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In many situations many users may consult and update a common data-

base. We can think of such independent user transactions as sequences of

atomic database operations, interleaved with computations that are local
to the user, that is, they do not affect or depend on the current state
of the database. It is a function of database management to handle the
update and retrieval requests made by the users in such a way so that the
resulting overall process is in some appropriate sense correct. It is
generally accepted--see, for example, [SLrR), [SK], [EGLT], [BpPR)--that
the right notion of correctness in this context is that of gerializability.
A sequence of atomic user updates/retrievals is called serializable
essentially if its overall effect is as though the users took turns, in
some order, executing each their entire transaction indivisibly. The
simplest example of a non-serializable sequence is a primitive form of a
"race". Imagine two users that increment a counter by first sensing its
value, and later registering an increased one. If both users retrieve
the value of the counter before either of them has updated it, the
resulting execution sequence--or higfory--is not serializable. This is
because both possible serial executions of these transactions would have
resulted in a larger total increment. Naturally, much subtler examples
exist.

The appeal of serializability as a correctness criterion is quite
easy to justify. Databases are supposed to be faithful models of parts
of the world, and user transactions represent instantanecus changes in

the world. Since such changes are totally ordered by temporal priority,




the only acceptable interleavings of atomic steps of different trans-~
actions are those that are equivalent to some sequential execution of
these transactions. Another way of viewing serializability is as a tool
for ensuring system correctness., If each user transaction is correct--i.e.,
when run by itself, it is guaranteed to map consistent states of the data-
base to consistent states--and transactions are guaranteed to be inter-
mingled in a serializable way, then the overall system is also correct.

k In this paper we consider transactions that consist of two atomic
actions: a retrieval of the values of a set of database entities--called
L the read-g8et of the transaction--followed by an update of the values of
another set of entities--the write-get. This is exactly the kind of
transactions handled by the system SDD-1 [BGRP), ([RG]. However, the

h main reason for considering this model here is that it provides a nice
framework for understanding and comparing very different philosophies of
serializability that already exist in the literature--e.q., [BS], (SLR],
[EGLT), [BGRP). Despite its apparent simplicity, it yields a theory of

serializability that is rich in combinatorial intricacies, and raises

interesting complexity questions. Since our model is the most general

common restriction of the models in the various references cited above,

our negative results apply verbatim to those models. Furthermore, most 1
of our positive results and characterizations are also easily generalizable
to more general situations, although their proofs--in many cases their

very statements--would be extremely cumbersome. Hence, we view our model

as a convenient language, of the right degree of conceptual complexity,
for developing and communicating our ideas about serializability, rather

thar a set of restrictions that enable the proofs of certain theorems.
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We formalize our model of transactions in Section 2, where some pre-
liminary results are also proved.

In Section 3 we prove that the question of whether a given sequence
of read and write operations corresponding to several transactions (called
a higtory) is serializable is NP-complete [AHU), [Ka). This suggests
that, most probably, there is no efficient algorithm that distinguishes
between serializable and non-serializable histories.

In Section 4, we study some efficiently recognizable subsets of the
set of serializable histories. 1In other words, we present polynomial-time
"heuristics" that approximate the NP~complete predicate of serializability--
in a manner quite reminiscent of efficient approximations of NP-complete
optimization problems [GJ), [PS). We show that the two-phase locking
strateqy [EGLT] and the protocol P3 of [BGRP] are incommensurate special
cases of two more general classes called Q and DSR--the latter is
related with the model of [SLR]. These two serializability principles
are therefore very general (and applicable) new serialization methods. We
also introduce the class SSR of histories that can be serialized without
reversing the order of temporally non-overlapping transactions; it is not
known whether this class is efficiently recognizable. 1In Section 5, we
observe that the quite intricate interrelations among these interesting
classes are simplified considerably if some "static" restrictions are
imposed on the read- and write-sets. We point out there that the simple
serializability theory of [SLR] is due to such a restriction of their model.

For all efficiently recognizable classes of histories studied in

Sections 4 and 5 there is also an efficient scheduler; an algorithm, that

is, which takes any history and transforms it to its closest (according




to some appropriate metric) history within the class considered. In
Section 6 we show that this i{s no accident: a class of histories has
an efficient scheduler i{f and only {f it is efficiently recognizable,
plus a regularity condition, namely that its set of prefires is also
efficiently recognizable. By this result, the complexity theory developed
in Sections 3 through 5 is practically relevant, because the practical
question of the existence of an efficient scheduler for a given class
of histories is explicitly linked to the complexity properties of the
class. Another implication is the negative result that, unless ¥ = NP,
there is no efficient "serializer" of histories, and hence considering
efficient but more estrictive schedulers--such as the ones discussed
above--1s a reasona.:e alternative. Finally, Section 7 concludes our
treatment of the subject. We discuss there a number of possible exten-
sions of our results such as to general (multi-step) transactions and

distributed databases.




2. DEFINITIONS-NOTATION

A history is a quadruple h = (n,7,V,S), where n is a positive
integer; T is a permutation of the set Xn = {Rl,wl,Rz,Hz,...,Rn,wn}--
that is, a one-to-one function n:In'°{l,2,...,2n}--auch that
"(Ri)< "(Hi) for i=1,2,...,n (a permutation 1 is represented by
<W-l(1).3-1(2)....,ﬂ-1(2n)>): finally, S is a function mapping Zn to
2V. where V is a finite set of variables., Each pair (Ri'wi) will be
called a trmsaction T,- S(R)  will be called the read set of T,. and
S(Hi) its write @et. We shall represent histories in a compact way by

exhibiting 7, with the sets §(:) given in brackets following each

X 5 ¢ ' i 3 - <R, , ' o’
element of . For example, the history h (3 Rl R2,H1,R3 HZ'&B

{x,y},8) where S(R)) = S(R,) = {x}, S(R)) = @, S(Wy) = {y}, and

S(W,)) = S(W,) = {x,y} 1is represented as
h = Rl(x]szllx,y]R3(x]w2(x.Y)H3[Y].

The set of all histories is denoted by H.

We can think of each transaction T, as starting with an instantaneous
reading of the values in the variables in S(Ri)' performing a possibly
lengthy local computation and then instantaneously recording the results
in a different set S("i) of variables. We do not look into the details
of the exact nature of the local computation. In fact, we view each

transaction T, as a set of is(w‘)l uninterpreted lS(Ri)l-nry function

i
symbols (fij:j- 1....15(uin}. 7 is the sequence in which these atomic

i
3
2
3
3

read and write operations take place. Thus, a history can be viewed as a

special case of a fork~join parallel program schema, in which the local
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Figure 1. The history h= Rll!lkz"lllr91R3(ll"2(!.yl‘13(yl viewed as a
parallel program schema.
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computations involve a number of local temporary variables tij and are
executed in parallel with other read-write operations (see Figure 1).

The concatenation of two histories hl- (n,¥,¥,8), hz-'(m.o,v,T)
is a history h10 hz- (n+m,T,V,P), where P(Hi)- S(wi) if 1<n, and

S L S Rl 3 : ;
P(wi) T(Hi-n) for i>n. Similarly, P(Ri) S(Ri) if i<n, and
P(R,) =T(R } for 1>n. Ao TN )=w(w. ) 4f L<n, and

1 i-n ) i s

TN, ) = p(W, _ )+2n for 41 > n, T(Ry) = "(Ry) for 1 s n, t(Rg) = p(Ry_p)+2n for

i>n. In other words h0h2 is a juxtaposition of the two histories, only

1
with the transactions of h2 renamed. Thus, if
h1 = Rl[x]R2[y]W21Y1R3W1[2]W3!Yl
and
h2 - R](x,ylﬁzlxlwl(ylﬂzlz] ’
then

hyeh, = Rl(x]szylw?(ylﬂjwl{z]w3lyIR4!x,y}R51x1H2lylwslzl.

We say that two histories hl- (n,m,v,S) and hz- (n,m*',Vv,S) are

equivalent (written h1 ;hz) 1f and only if the corresponding schemata are
(strongly) equivalent. In other words, given any set of !Vl domains for
the variables, any set of initial values for the variables from the
corresponding domains, and, furthermore, any interpretation of the functions
gij' the values of the variables are identical after the execution of both
histories. Notice that our definition of equivalence requires that the two
histories involve the same set of transactions. Thus hl- Rllylkzwzlxlwllx]

is not equivalent to h_= nl(ylwl{x]. despite the fact that their corresponding

2
schemata are equivalent (.ssentjially because 72 is "dead" in hl" This is
a matter of convenience, and little change to our derivations would be

necessary in order to broaden equivalence in this sense.
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To give a syntactic characterization of equivalence, it is necessary
to first introduce some terminology. Let h= (n,7,Vv,S) be a history.
The augmented veraion of h is the history hw= (n+2,7,V,5), where

Tac< n > 5 s i <
Ta<R o1 Y1 TR 2 a2 and S(R,) =S(R,), S(w,) S(wi) for 1i<na,

and also S(Rnﬂ) = S(Hn+2) =93, S(Hnﬂ) .S(Rn+2) =V, In other words, h

is h preceded by a transaction that initializes all variables without
sensing any, and followed by a transaction that reads the final values of
all the variables, without changing them. Suppose that xES(Rl). We
say that R, reads x from W, in h if wj is the latest occurrence

3
of a write symbol before Ri in h such that xEﬁS(Wj). Notice that

since h contains wn*l with S(wqol) =V, such a write symbol always
exists. The definition of a [fve transaction in h i3 as follows:
&, T is live in h.
n+2

b. If for some live transaction Tj' Rj reads a variable from Hi
in h, then n is also live in h.

¢. The only kinds of live transactions in h are defined by (a)
and (b) above.

The following 1s now a simple syntactic characterization of history
equivalence, essentially a restatement of the characterization of schema

equivalence in terms of Herbrand interpretations, [LPP]:

PROPOSITION 1. Two histories hl- (n,7,v,S) and h2- (n,n',v,8)

are equivalent if and only if they have the same sets of live transactions,

and a live R1 reads x from Hj in h] if and only if Ri reads x

from nj in hz. o]




One of the implications of Proposition 1 is that equivalence of
histories can be decided efficiently. The sets of live transactions can
be found in O(n-]V[) time by applying the recursive definicion given

above, and so can the reads from relation for transactions. Hence we have:

COROLLARY. Equivalence of histories can be decided in O(n-|v|)

time.

The main theme of this paper is the notion of serialiaability. A

history h= (n,m,V,S) is sertal if ﬂ(Hi)- ﬂ(Ri)* i1 for all im1.2,..-u00

in other words, a history is serial if Ri immediately preceeds wi in it

for i=1l,...,n. A history h is asertalisable (notation: h€SR) if and
only if there is a serial history hs such that h -hs. In the next
section we shall present a syntactic characterization of serializable

histories analogous to (and based on) Proposition 1.




3. THE COMPLEXITY OF SERIALIZABILITY

In order to examine the complexity of the serializability problem,

we need first to introduce some graph-theoretic terminology.

DEFINITION 1. A polygraph*® P= (N,A,B) is a digraph (N,A) to-

gether with a set B of bipaths; that is, pairs of arcs--not necessarily

in A--of the form ((v,u) fu,w)) such that (w,v) €A. o

Alternatively, a polygraph (N,A,B) can be viewed as a family D(N,A,B)

of digraphs. A digraph (N,A') is in OD(N,A,B) if and only if ACA’',

and for each bipath (al.a‘)G B, A' contains at least one of al, 2"

Polygraphs will be represented schematically as in Figure 2a. Arcs in A

will be drawn as ordinary arrows, and pairs of arcs in B will be marked

by a circular arc centered on their common node.

DEFINITION 2. A polygraph (N,A,B) is acyclic if there is an

acyclic digraph in U(N,A,R). o

For example, the digraph of Figure 2b is both in 0U(N,A,B) and

acyclic; it follows that (N,A,B) of Fiqure 2a is acyclic. Notice that

for a polygraph (N,A,B) to be acyclic, the digraph (N,A) must

definitely be acyclic.

Given any history h= (n,7,V,8) we are going to define a polygraph

P(h) = (N,A,B). N is the set of live transactions of h, the augmented version

of h. First, A contains the arcs {(Tw¢1'v)”,EN-{Tn4l)}' and also the

-
We insist on this terminology only because it has already become
notorious for its impropriety.
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arcs {(V'Tn+2)”’en-{Tn+2)}' Secondly, whenever transaction u reads
some variable x from v in h, we add the arc (v,u) in A. Further- i
more, if for a third transaction w, X 15 1in the write-set of w, then
we add the bipath ((u,w),(w,v)) in B. This concludes the construction
of P(h).
Intuitively, P(h) captures a partial order that can be interpreted
as "happened before”, and with which any history that is equivalent to h
must be consistent. Each arc (v,u) means that u read some variable
from v and hence must follow it. Also, a bipath ((u,w),(w,v)) means that

w writes on the same variable, and hence cannot be in between v and u;

it must either precede v or follow u. This is stated as a lemma:

LEMMA 1. Two histories hl'(n,'?,v,f;) and hz-(n,ﬂ',V,S') are

equivalent if and only if P(hl\ and P(hz) are identical.

Proof. Both directions follow from Proposition 1 and the definition

of P(h). o

LEMMA 2. A history h= (n,7,Vv,S) without dead transactions is seriali-

zable {f and only {f P(h) is acyclic.

Proof. If h is serializable, there exists a serial history h.
such that h *hg or, by Lemma 1, P(h) = P(hs)' However P(h')- (N,A,B)
is acyclic. To see this, let (Tl,...,Tn) be ordered according to their
occurrence in h_. We construct a digraph (N,A')EID(P(hs)) as follows:
A' contains the arcs in A, and for each bipath ((Tx'T )'(Tj'Tk)) in

3

B we add to A the arc (Ti'Tj) if 1%<3; o (Tj'Tk) if J<k. To
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show that exactly one of these must occur, recall that in hs Ty reads
a variable xES(Hj) from Ty, and hence h<l, and not h<j<i.
Consequently the above construction yields a digraph (N,A') in
D(P,A,B). Next, notice that (N,A') is acyclic since it is a subgraph
of the total order (TnOI'Tl""'Tn'Tn+2)' So, P(h) is also acyclic.

Now, let (N,A') be an acyclic digraph in D(P(h)). The serial
history hB resulting from topologically sorting (N,A') is then equi-
valent to h. This follows from Proposition 1 and from the fact that
since one of the two arcs of each bipath in B is in A', all transactions
in hq read all variables from the same transaction in h as they do in

h_. o
s

Unfortunately, the combinatorial characterization of serial repro-
ducibility shown in Lemma 2 does not directly suggest an efficient test.

In fact, the theorem below is strong evidence that no such test exists.

THEOREM 1. Testing whether a history h 1is serializable is NP-
complete, even if h has no dead transactions,

In order to proceed with the proof of Theorem 1 we first need another
lemma. It is well known (see (AHU],(Ka]) that the satisfiability problem
of Boolean formulas in conjunctive normal form with two or three literals
in each clause (abbreviated SAT) is NP-complete. We can show that a more
restricted version of this problem is still NP-complete. Call a clause
mized if it contains both variables and negations of variables, and call a

formula nonetroular if at most one of the occurrences of each variable is

in a mixed clause.
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LEMMA 3. SAT is NP-complete even if the formulae are restricted

to be noncircular. . é

Proof. Consider any instance F of SAT and a variable x in it.
let m be the number of occurrences of x in the formula F, and let

xl.xz.....xn be new variables. We replace x in its first occurrence

by x,., in its second by ;5. in its third by Xy etc. Finally, we add

1

t.e clauses (xl sz) A (x1 sz) A “2""3’ A “2‘”‘3) A ..., which is the

conjunctive normal form of Xy 1;2 '.x3 7x4 Z+++. Repeating this for all

variables, we observe that the resulting formula is trivially noncircular,

and the construction requires only a polynomial amount of time. o

Proof of Theorem 1. The set of SR histories is definitely in NP,

since to show that h is SK, one only needs to construct a serial history

hs (of length not greater than that of h), and check by Proposition 1 that

h and hS are equivalent.

We will next show that a known NP-complete problem, the noncircular
SAT problem of Lemma 3 above, reduces to S5R-testing in polynomial time. ]

Given any such formula F, we are going to construct a polygraph
PP. (N,A,B) such that PF is acyclic if and only if F is satisfiable.
We will then show that P, can be considered as P(h) for a suitable

history h, without dead transactions. In view of Lemma 2, this will

conclude the proof.

We start from the construction of PF'-(N,A.B). F has m clauses

Cl....,c- and involves n Boolean variables xl.....xn. Each clause C

i
consists of three literals | 0aY \12"‘13' where xjk is either a variable

or a negation of one. N contains the nodes 'j' bj’ cj for each variable




5, 7 .

xj. and Yik' %ik® k= 1...,m‘ for each clause C1 with m, literals. For

) to A, and the bipath ((b,,c.),

29

each variable x‘1 we add the arc (aj'bj
(c,,a,)) to B. For each clause C, , we add the arcs (ylk'zl.l&l)

e G i

(addition mod nl) to A. Finally, if \“‘ - xj , we add the arcs (cj,y“‘)

and (b .z“) to A, and the bipath (('lk'yik)'(yik'bj)) to 3. I xlk. ‘j'

]
then we add the arcs (zu.c ) to A, and the bipath ((a ,,z ),

y) and (y.,.8, 3 %4k

)) to B. For example, if the literal A is x), the subpoly-

(2 Yix ik

graph of Figure 3 will appear 1in PF.

and n together with the

Finally, we add to N the nodes no.nC ¢

arcs (n.,n),(n,n ) and (n,n.) for all n€EN-{n.,n ,n.}, and also the arc
0 c f | s

(nc,nf). This concludes the construction of PF. In Figure 4a we illustrate

the construction for the Boolean formula

F = (xl\!xz)f\ (xlvxzvxj)/\ (xzvx3).

N

For simplicity, in Figure 4 we have omitted the nodes n, and Ne.

We will now argue that PP is acyclic if and only if F is satis-

fiable. Suppose that PF is acyclic. This means that there is an acyclic

digraph (N,A') € U(PF). Obviously, for each j, exactly one of the edges

db,,c,) and (c,,a,) 1is in A'. Think the fact that (c..a,) EA*
G s Tasah - il

means that x) is assigned the value frue. We may immediately note that

if a literal xik is given the value fzlsc by this assignment, the

corresponding arc ( ) is also in A', since otherwise, a cycle of

ZikYix

j.)’“‘.bj)--or (zik'cj'.j) if A“‘-xj--uould exist in (N,A').

Hence, the only way for (N,A') not to have a cycle of the form

the form (c

{ is that at least one literal in each clause is

VL S VLL T LA T L
assigned the value frug, which means that F is satisfiable.




Conversely, suppose that F 1is satisfied by some truth assignment
T. We will construct an acyclic digraph (N,A') € D(PP)’ A' contains

all of A and the arcs (c],aj) if 'r(x))-tr'ue, (bj'cj) if

i = false, 2D
if T()‘ik) false P R ¢

and T(xj) = false.

T(x,) = false, and the arcs (

j k' Yix

A, =%, and T(x,)=true, and (a_,z
- 3 b 3
Obviously, (N,A') 1is in D(PF); the claim is that it is acyclic. We

‘xk) if Ajk- x
first note that since F is by hypothesis noncircular, (N,A) is acyclic.
This is because by the construction of A, the clauses containing
variables only or negations only correspond to node sets with only in-
coming or, respectively, only outgoing arcs; node sets corresponding to
mixed clauses have both incoming and outgoing arcs, but no two such node
sets are reachable from each other in (N,A), by F's noncircularity: it

follows that (N,A) 1is indeed acyclic. It is easy to check that the arcs

in A'-A can harm the digraph's acyclicity only by introducing a
(zu.y“,....yu) cycle; however, this would mean that some clause has
no true (under T) literal, and hence T does not satisfy F, a contra-
diction. In Figure 4 we show in brokenlines the arcs of an acyclic
digraph in D(PF); this digraph corresponds to the truth assignment
T(xl) = true, T(x,) = falee, T(x3) = false which satisfies F.

In order to conclude the proof we need to construct a history h

such that P(h) -PF. All nodes of PF correspond to distinct transactions.

To construct the read and write sets of the transactions (except for

nyen, and nf). we start by having all read sets empty, and a variable x,
in the write set of each transaction v. For each arc (v,u) € A we add a
variable ‘vu to the write set of v and the read set of u, and for each

bipath ((v,u),(u,w))€B we add X, tO0 the write set of u. Finally,







R(no)' 9, U(no)- (xv:veN} {xuv:(u,v)EA} - R(nf). R(nc)- (xv:uiN).

k‘(nf) - @, H(nc) - (xuv:(u,vﬁA). In order to sketch the comstruction of
h, we represent the read and write operations corresponding to the node

v of PF by R(v),W(v) respectively. We use v to stand for R(v)W(v).

We start the construction of h from left to right. First, for each clause

C, consisting of just negations we add the subhistory h(Ci)

1 'yu""'ui'

Next, for each variable x, that appears unnegated in the mixed clause

]

(Tl (1.11)“l S xj) we add the subhistory h(xj) - R(aj)zi

The i part appears only if C1 is purely negated and Alm =- §ie

W(a )R(hj)ylkw(bj) .

m iy
X Further,

££ A = x, for some purely unnegated clause C_ then appears also
pq Pares " ¥ p Toq ¥

after Yok * Then follow subhistories corresponding to the remaining

variables. If x, 6 does not appear unnegated in a mixed clause, then we

3

add to h the subhistory h(x‘) = R(ai)zimcjw(aj)k(bj)yikw(bj)' Again,

Y iR appears only f{f bl - X, for some purely unnegated clause Cl, and {f

x, also appears in a purely negated clause C_ (2 = x,) then zp comes

i p Pq b]

after i Finally, we have h((‘.‘) = z“...z“ni for each purely negated
clause Ci' and at the end the transaction o
To argue that PF = p(h), first note that all (yij'zlﬁ-l) (mod n‘)

arcs are realized by h, and that the subpolygraph of Figure 3 is realized

for each xj - )«“. and the symmetric subpolygraph for xj = le'

Furthermore, it is quite easy to check that no other arcs and bipaths are

added by the construction. Hence PF = P(h), which completes the proof of

Theorem 1. 0o




4. EFFICIENTLY RECOGNIZABLE CLASSES OF SERIALIZABLE HISTORIES

Given that SR is NP-complete, it is reasonable to look for subsets of
SR that are efficiently recognizable. 1In this section we study several

such classes of serializable histories.

4.1 The Class DSR

DEFINITION 3. Let hl'(n.“,V,S) and h2=(n,ﬂ‘,V,S) be histories.

We write that hl'\'h2 whenever 1 (0)=7n'(g) for all 0€§n except for

= ' = = . =
two elements 01,02€£n with n(ol) m(o,) =3, n(oz) ” (01) j+1 for

: some 1<j<n-1, and either

a. ol-Ri, O“‘Rj for some i, j<n, or

b ol-Ri' o

Ce ol-wi, 02-wj.

anj' i¢j, i, j<n, and S(Ri)ns(wj)-ﬂ. or

i, 3<n, and S(Wi)nS(H )=@, o

b

As an illustration, we have that

Ry [XIR, (X)W, [x]W, [y] * R [x]R, [x]W, [y]w [x] ~

R2(xlkllx]w2(ylwl (y] ~ Rzlxlwzly]Rllx]ﬂllx] ¢

because at each step the next history is obtained from the previous one by

switching two adjacent symbols obeying one of the conditions (a), (b) and

(c) of Definition 3 above.

The following is a direct consequence of Proposition 1 and the above

definition:

PROPOSITION 3. If hl'\'hz' then hlih2 . o




-
let - be the reflexive-transitive closure of ~. Since ~ |is

symmetric, : is an equivalence relation which is, by Proposition 3, a i
restriction of =. We can show that - is a proper restriction of =

by observing that for the two histories i

hy = RyIXIRM[x]R, (¥ W R [y ]

|
¢ |
and i
’ i
h, = Rz“’"":"“"z“sl"“\“ll"]
] we have
h1 h2 &
but
h
hl ’ 2

PRI

We say that che history h is J-gerializable (DSE) if there is a serial

® h.. Obviously, if a history is DSR, it is 3

history hs such that h s

certainly SR.

We can associate with a history h= (n,7,V,S) a digraph D(h)

defined as follows: The nodes of D(h) are the transactions (Tl,...,Tn}

of h, and the pair (Ti'T ) is an arc of D(h) if and only if either

)
a. S(Rx) nsmj) v @ and ”Ri) <n(wj), or
b. S(Nx) nsmj) 7o and “("1) <W(Rj). or 1
C. s(wi)ns(wj) 7o and v(ui)<w(wj).

LEMMA 4. Suppose that for two histories hl- (n,7,Vv,S8) and

hz- ;%" ,V,8) D(hl) and D(hz) have no cycles of length 2. Then

h, * h, 1if and only if D(h;) = D(h).

1 2




=) G

Proof. It should be obvious from the definition of D(h) and the

~ relation that whenever h1-h2, also D(hl)- D(hz). Consequently,

- s N
h1 - h2 implies D(hl)- D(hz).

For the other direction, assume that D(hl)- D(hz). We shall

transform h2 to h1 by a sequence of ~ transformations as follows:

Take the symbol in fn that is the first symbol in h {i.9., ﬂ‘lll))

1
and bring it to the first place of h2 by successively switching it with all

symbols preceding it in h._; then take ﬁ_l(Z) and bring it to the

2
second position by switching it with all symbols preceding it, except

ﬂ‘l(l); and so on, until h2 is transformed to hl' It remains to show

that all these switchings have been legal ~ transformations. Suppose

that at some time we had to switch 01 with 02 in a manner not

allowed by Definition 3; that is either

a. ol-Ri' ﬁz-Hi; this means, however, that in hl 5 ni precedes
Ri' and hence hl is not a history.
. - ' ¥, =W, : : s i
b 01 Ri nz 3 and S(Ri) ﬂs(wJ) £ @ This would mean

however, that (Ti' Tj) is in D(h2) and 'Tj'Ti) is in D(hl). Since
D(hl) and D(hz) have no cycles of length 2 we can conclude that
D(hl) # D(hz).

c. Similarly for Oy =W, 0,=W and  S(W.) nNs(w,) ¥ @. o

o« L, b)

We can now prove the following Theorem.

7
e
13

THEOREM 2. A history h =+ (n,m,V,S) is DSR if and only if D(h)

ig acyclic.

Proof. Suppose that D(h) is acyclic. We can thus sort

topologically the set (Tl,....Tn} of nodes of D(h). Think of this
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order as a serial history hs. It is immediate that D(hs) =D(h), and

* h.. It follows that h is DSR.

hence, by Lemma 4, h s

For the other direction, assume that h is DSR. We have two cases

& D(h) has a cycle (Ti'Tj'Ti) of length 2. This means that
T(R;) <vt(wj) <mwW.), and S(R,) ns(wj) AR, SWON(S(WOUSRy)) # @, Tt is
easy to show that in all histories h' for which h " h' we will also
have “'(Ri) < w'(w]) <?T'(Hi), as otherwise h #& h', and h 4 h', by
Proposition 3. Hence there is no serial history hS such that h th.
a contradiction.

- D(h) has no cycles of length 2. By Lemma 4, there is a serial
history hs such that D(h) -D(hs). However, serial histories h

S

have acyclic D(hs). and hence D(h) is acyclic. a

Theorem 2 suggests that histories that are DSR can be detected

efficiently by checking D(h) for acyclicity:

COROLLARY 1. Checking whether a history he= (n,7,V,S) 1is DSR can

be done in 0(|v|n?) time. o

Also, we can rephrase Theorem 2 as follows (compare with

Definition 4 below):

COROLLARY 2. A history he= (n,n,v,S) is DSR if and only if we can
find real numbers (sl....,snb such that

a. If s(wi)ns(a ) #9 and W(ﬂl) <m(R,) then S, < §,.

3 3 i 3
b. If S(R,)NS(W,) # @ and (R ) <n(wW,) then 8, <8..
i 3 i 3 i 3

Ce If S("i) nS(ﬂj) L and ﬂ(“)) <ﬂ("j) then S‘ < Sj. o




)

4.2 The Class O ;

DEFINITION 4. A history h= (n,7,V,S8) is in Q if there exist

non-integer, distinct real numbers Sl.Sz,...,Sn with the following
properties:
a. w(R,) <SS, <n(W,)
i i i

b. b £ S(Ri)ns(wj) ¥ @9, i3 and n(Ri)<n(wj) then sl<s_‘ .

c. If S(W)NSW,) ¥ @ and 7(W. ) <n(W,) then S§,<S.. ©O
1 ; | 1 J i )

The real numbers S eea S in Definition 3 are called geriali-

1'
zability points. Their intuitive meaning is that the history h 1is the

same as though transaction Tl had executed indivisibly at the time

instance S1 (during which, by (a) above, it was active), transaction

Tz at Sz, and so on. As an illustration, the history

h = Rl(le2{le:(Ylﬂlfﬂ"}[X]"lfYT

is in the class ¢, since the values 51- 3.5 Sz- 2.5, and 53- 4.5

satisfy, as the reader can check, the requirements of the definition.

The class Q was independently introduced by [Wol. &
THEOREM 3. If h is in Q, then h is DSR.

Proof. Conditions (b) and (c) of the definition of the class Q
above are identical to (b) and (c) of Corollary 2 to Theorem 2. Hence
it suffices to show that condition (a) above implies condition (a) of
Corollary 2. But this is immediate, because if ﬂ(\li) <m(R,) we have

b

that Si < "("1) < ‘"(Rj) <S8

j no matter what S(Rj) and 5('1) are. o




Given a history h= (n,7,V,S)

we can construct another digraph

D' (h)--a superdigraph of D(h)--with node set again (T ,...,Tn} and

1

(Ti'Tj) an arc if and only if one of the following holds

b.

C.

“(Wi)< T(Ry)
"(Ri)< ﬂ(Hj) and S(Ri)f\S(Hj) P

ﬂ(wi)< W(WJ) and S(Wi)f15(wj) Fo.

In other words D'(h) contains all the arcs of D(h) and possibly some

other arcs for the cases in which ﬂ(wi)"ﬂ(Rj) and S(Rj)f\s(wi) = @,

THEOREM 4. The history h= (n,m,V,S) is in the class Q if and

only if D'(h) is acyclic.

Proof. Suppose that h€Q, and let S
numbers.

whenever

l""'sn be appropriate

Without loss of generality 51( SZ< see < Sn. We shall show that

(Tx'Tj) is in D'(h), then 1i<j., Suppose that 1i> 3j; by the

definition of D'(h) one of the following must hold:

a.

w(wl)< ﬂ(Rj). However, Sx( ﬂ(wi)< R(Rj)< Sj' which contradicts

our assumption that 51< Sz< cea € Sn and { > j.

W(Hi)< W(Hj) and S(Wx)‘WS(wj) ¥ #. By (c) of Definition 4,

however, sl<'s , again a contradiction.

b

ﬂ(R£)< w(wj) and S(Ri)ITS(Nj) # §. Similarly, a contradiction

is reached by (b) of Definition 4.

Consequently, D'(h) is acyclic, since it is a subgraph of a total order.

For the other direction, suppose that D'(h) 1is acyclic. We can

sort topologically its nodes to obtain the order, say, (TI'T
we can define the real numbers §_,S ""'sn' and sn

as follows:

2,....Tn).

(for convenience)

S +1




oL 4@5-;‘:—-.

=23

a. S“*l = 2n+1l

b. S, = minis l.ﬂ(w

j » )} - = j =, nel,...,l . |

i
It is clear that the S)'s are distinct, increasing, non-integer

real numbers, and that they satisfy (b) and (c) of Definition 4. It

suffices thus to prove (a) of Definition 4, in particular that S£> "(Ri)

for all i. Suppose that, for some i, Si < ﬂ(Rx)' Let j be the

smallest index, no smaller than i, for which ﬂ(wj)< Sj+1’ Thus

x - l‘—i-‘.l_ - J -
Si W(Nj) n+l "(kj) 1

Consequently W(Ri) >ﬂ(wj) - Xy OF ﬁ(Ri) >ﬂ(wj). Hence (TJ'TI) € A,

which contradicts the fact that j=i in the topological sorting of

D*(h) . o

COROLLARY. Testing whether a history h= (n,n,V,S) is in Q can

be done in o<!v|n2) time. o

4.3 Two-Phase Locking and the Protocol P13

A very influential proposal for guaranteeing serializability of
update systems has been the two-phase locking mechanism of [EGLT]--also

discussed extensively in [BS]. Also, the essence of a quite different

serializability principle (which was used in the development of the SSD-1

distributed system (RG], ([BGRP]) is captured by the so-called protocol P3




(see [BS]). In this Subsection we show that these two different
philosophies of serializability are reduced, in our model, to two
efficiently recognizable incommensurate subsets of our class DSR.

The two-phase locking strategy requests and releases actual locks--
1.e., mechanisms that guarantee exclusive data access--during the execution
of the different operations of an update. The rule that is proven
sufficient for guaranteeing serializability is: never request a lock
after a lock has been released. We have, therefore, two phases: one
during which locks may only be requested, followed by one during which
locks can only be released. The first release of a lock delimits the
two phases. In our model of two-step updates the authors of [BS] note
that two-phase locking for a history h= (n,7,V,5) essentially amounts
to dividing the interval from ﬂ(Rj) to T(W,) into two intervals:

3
one during which no symbol W, with S(R’)f1S(Hi)# @ can exist, followed

.

by one during which no symbol 0€ Xn with S(O)NS(W ) ¥ @ can exist.
]

This 1s captured by the following definition:

DEFINITION 5. A history h= (n,7,V,5) is two-phase locked
(notation: h€2PL) if and only if there exist distinct non-integer real

numbers L ....ln (the lockpointe) such that

1'
a. ﬂ(Ri)< !‘< w(w’) for I®);.sish

b. If s(ni)ns(u’) 4@, 4435 and ”Rt“"("j)' then "1<"j

C. If S(W‘) NS(w,) # @ and *(Hi) <m(w

3 )., then ﬂ(wi)< 3

3 a

To understand Definition 5, consider a transaction (Rj,u ) in a

b

history h€ 2PL, and its lockpoint lj. The intuitive meaning of the

lockpoint is the following: during the interval lﬂ(Rj),lj] all




T

variables in S(Rj) are "protected" from writing by other transactions,

by virtue of (b). Also during the interval [lj,ﬂ(wj)] the variables

in S(Hj) are protected from reading and writing. Conditions (b) and

(c) therefore essentially say that the interval [lj,n(wj)] overlaps

no interval llk,"(wk)) with S(wk)f)S(wj) ¥ § and no interval ln(Rk),lk]
with S(wj)l1S(Rk) # #. Thus, the second lock is granted before the first

is released, in accordance with the two-phase locking principle.

Although Definitions 4 and 5 differ only slightly in condition (c),

the latter is a substantial restriction. First, we notice that 2PL c Q.

Indeed, if h€ 2PL then the lockpoints £ <t are automatically

valid serializability points S ..,Sn in Definition 4. To see this,

3
just notice for that condition (c) of Definition 5 (W(H1)< lj) together
with (a) (l‘< n(Hi)) imply (c) of Definition 4 (namely, Si < S)).

To show that the inclusion is proper, notice that for the history

h = R1R2R3Ix)w1[xlwzly.zlw3lyl

we have that hE€Q (see Figure Sa for D'(h)) but h € 2PL. The ex-
planation for the latter fact is that transaction 3 has no lockpoint 13.

since, if it had, should obey 13< £1< 4 (by (b)) and also 23> 5

3
(by (c)).

We can, however, check very efficiently whether a history h |is
two-phase locked. Given any history h= (n,7,V,S) we define the history

h®* = (2n,n*,v,S*), where h* is obtained from h by inserting a

transaction after "j in h for J=1,...;,n BY"R =g,

W
Raes’ Yney n+j

‘and S.‘wn4j) = S(Hj). For example, the history h* for h of the

example above is
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(a) (b)

Figure 5
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L
h* = R1R2R3[xlwl[x]R‘w4[x]H2[y,z]RSHS(y,z]w3[y]R6w6[yl -
THEOREM 5. For a history h= (n,7,V,S) hE€2PL if and only if

h* € Q.

Proof. Let (ll,...,ln} be a set of distinct non-integer real

numbers, and let a(j) be the number of positions to the right that the

symbol ™ " (j) was shifted in h*; in other words a(j) = 2-|{Hi:ﬂ(ui)< j}l-

Consider the set {Sl....,s }, where si-li+a(llil) for i<n, and

2n

S, =MW, ) +a(m(W., )) + 3/2 for i>n. We claim that {2 ) is an
i i-n i-n i

acceptable set of lockpoints satisfying Definition 5 if and only if

(Sj} is a set of serializability points according to Definition 4. Both

directions follow from the definitions. The formal derivation is

omitted. o

To illustrate the theorem, the history h above is in Q, since
D'(h) 1is acyclic (Figure 5a). However, it is not in 2PL, because D' (h*)

is not acyclic (Figure 5b). Naturally, Theorem 5 yields

COROLLARY. Testing whether a history he= (n,n,V,S) 1is two-phase

locked can be done in 0(n2{vl) time. o

We now turn to formalizing and studying in our model the protocol P13
of [BGRP) and [BS). Recall the digraph D(h) defined for any history h

in Subsection 4.1--see Figure 6a for an illustration in the case of

h = Rlll]R3ﬂ3[le2(x]V1(z]R4N2(Y.I)U‘(x] .
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(a) (b)

Figure 6

DEFINITION 6. Let G(h) be the wulirected graph corresponding to

p(h)--Figure 6b. A cwycle in G(h) is a sequence (Ti . 2. ) of

a
1 m
m > 2 transactions such that [Tx ,'ri ] are edges of G(h),
» G
j=1,...,m=1, and so is [Ti 'Ti ]. Notice that all edges are cycles
m 1
according to this definition. A cycle (’r1 ,...,'ri ) is bad if
1 m
[S(R, JUS(W, ))NS(W ) # @,
i i i
m m 1
and
S(R, )NS(W,_ ) # @ v o
o | o

Notice that in the above definition the first node of a cycle and
the order of listing of the nodes are important. For example, in
Figure 6 (Tl'TZ) is a bad cycle, whereas (TZ'TI) is not. Bad cycles
are, intuitively, those cycles that can correspond to a directed cycle in

D(h') for some other history h' involving the same transactions.

DEFINITION 6 (continued). Let h= (n,w,V,S) be a history. We say

that Tj is a guardian of T, if there exists a bad cycle

j'o.

h€P3) if whenever 'rj is a guardian of T

(TT «+T,) in G(h). We say that h obeyes the protocol P3 (notation

we do not have "(Ri) <mw,) <w(w‘).

i 3
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For example, consider the history h of Figure 6. The only bad
cycle in G(h)--Figure 6b--is (Tl'TZ)’ and hence the guardian relation

is simple: just T, is a guardian of Tl' Since ﬂ(wz) >"(ﬂ1), we have

that h€P3.

THEOREM 6. Suppose that h= (n,7,V,S) is in P3. Then it is also

in DSR.

Proof. We shall show that h€P3 implies that D(h) is acyclic.

> h re
Suppose that D(h) has a cycle (TI‘TZ""'Tm)' m>2. Consider the a

('I'J.'l'1

1) of D(h) --addition mod m; we have three cases:
+

T S(wj)nstwjﬂ) ¥ @ and n(wj)<n(wjﬂ).

b. s(wj)ns(nj’l) P and (W, ) <m(R ¥o

b j+l
- 1 S(Rj)ns(wjﬁl) ¥ @ and ﬂ(Rj)<"(“j§l)
Notice that in both cases (a) and (b) we have that 1(HJ)< '(wj+1)' and

that more than one case may be applicable to the same arc. Case (c) is

split into two subcases.

(cl) Cases (a) and (¢) do not apply to the arc (TJ-I'TJ)'

(c2) § = 1, or case (a) or case (c) applies to (Tj-l'Tj)'
In case (cl) we have that W(Hj_l) <ﬁ(Rj) <W(HJ+1). In case (c2), however,
we notice that Tj+l is a guardian of Tj. Consequently, since w(Rj) <
'(HJQI) we must necessarily have that w(HJ)< w(wj*l).

Now, consider the operations OJ. j=1,...,m, where 0j - Rj if
case (cl) is applicable to the arc (Tj'rj+l) , and OJ - HJ otherwise.

We have shown that w(oj) < '(ojﬂ

This is a contradiction, since it implies that w(Hl)ta(Ul). ]

) for § = 1,...,m (addition mod m).




Theorem 6 implies the following, independently proved in [BS]).
COROLLARY. Histories that obey the protocol P3 are serializable. 0O

Our next result concerns the complexity of recognizing those histories
that obey protocol P3. By the definition of this class, this complexity
is determined by the complexity of computing the guardian relation among
the transactions in a history. We shall show how this relation can be
computed efficiently. For each transaction Tj‘ let T'(T.,) be the set

3

of all transactions T, that satisfy S(Rj) OS(Ii) # #. Thus, T(Tj)

is the set of all transactions that are possibly guardians of Tj. To

determine whether a transaction TiE F(Tj) is indeed a guardian of Tj'
we delete all edges [Tj'Tkl such that S(lj)r\(S(wk) US(Rk)] =@ from
G(h), and then determine whether Ti and Tj are on the same biconnected
componant of the resulting graph. This can be done in O(nz) time by

the algorithm of ([Ta)]. 1If Ti and Tj are on the same biconnected
component, this means that there is a bad cycle (Tj'Ti""'Tk) in G(h),
and hence Ti is a guardian of Tj: otherwise, it is not. Repeating this
for all Tj's. we get an algorithm of total complexity 0(n2(|V|-0n2)).

Hence we have




THEOREM 7. Testing whether a history h= (n,m,V,S) €P3 can be

done in O(n?(|v] +n%)) time.

4.4 The Class SSR

Certain histories, though perfectly serializable, have a curious--and,

according to some, undesirable--property. Consider, for example, the

history

h = Rllle2H2[x1R3W3[y,zlwllyl

This history is serializable. However, the only serial history equi-

valent to h 1is easily shown to be
hs = R3W3(Y.11R1 lxlwl IY1R2H2[x1

What is interesting is that in h transaction 2 has completed

execution before transaction 3 has started executing, whereas the order

in hs has to be the reverse. This phenomenon is quite counterintuitive,

and it has been opined that perhaps the notion of correctness in trans-

action systems has to be strengthened so as to exclude, besides histories

that are not serializable, also histories that present this kind of

behavior. This leads to the following definition:

I in the strict genmse (notation: hESSR). 1If there is a serial history
L
] hg= (n,7',V,5) such that hZhg, and T(W)<T(R) implies

' ('1) <n' (Rj)-

DEPINITION 7. A history h= (n,7w,V,S) is said to be serializable



It is not hard to verify that all histories in the class Q satisfy

Definition 7. To see this, recall that a history h in Q@ has a set of

i i i el e A = ces z h.
serializability points sl< sz< Sn say, such that hs lel Rn"n h
Now, if W(Hi)< n(Rj), we have, by the definition of Si' Si< ﬂ(Wi)< ﬂ(Rj)
< Sj, and therefore i< j. Hence transactions 1 and 3j have the same
order in h, that they have in h. It follows that Q c SSR.

Nevertheless, the classes Q and SSR are not the same, as con-

jectured by [Wo]. A counterexample is

h = Rllle?[zlwzlx,le3(xlwl[x,ylv3(z)R4(ylW4lxl .

This history is equivalent to the serial history

h, = RXIZIW‘.X,YIRZI:IN

s {x.21R3lxl'3[11R‘(ylH4[xl '

"
“

satisfying Definition 7. However, h 1is not in Q; to check this, just
notice that the digraph D'(h) shown in Figure 7 is not acyclic. It is

not known whether the class SSR is efficiently recognizable.

&
i

)

\0

Figure 7

NSRS~
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4.5 Summary

The topography of the set of all histories H and its subclasses
SR, S (the serial histories), Q, SSR, DSR, P3 and 2PL is depicted in
Figure 9. The inclusions shown either follow from the results of this
section, or are straight-forward. We also show below an example of a

history for each of the 12 regions in this diagram.

A
!
!
i
s:




Figure 8

R1[xlﬂl{xlkslxlw:lxl
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. RESTRICTIONS ON THE READ- AND WRITE-SETS

It turns out that if we impose certain restrictions on the structure
of the map S of a history--i.e., the read- and write-sets of the trans-
actions in the history--the topography of H (shown in Figure 8 for the
general case) is simplified considerably. The most striking such result
is that of (SLR]. A basic assumption in the model of [SLR)--which is
otherwise more general than the present in that it allows more than two
steps--is that no database entity (or variable) is updated, unless it has
been previously read. In our model and notation, this means that

S(w,) S(Rj). what is surprising, is that serializability, an NP-complete

b

predicate in our model, is efficiently decidable in theirs. We explain

this in view of our previous discussion as follows:

THEOREM 7. Suppose that for a history h= (n,7,V,S) we have

S(Nj) E.S(Rj) for j=1,...,n. Then h 1is serializable if and only if

h 1is in DSR.

Proof. It suffices to show that if S(Ol)f1S(07) ¥ ¢ and

¥{0.)<%la.) for O., 0.€E1% such that at least one of ©,, O is a
1 2 1 2 n > 2

write symbol, then f'(01)< 1'(02) in any history (n,7',V,S) equi-

valent to h. Suppose that o0 =W , O =W

1 1
a variable x, which, by hypothesis, is also in S(Rl) and S(Rz).

e S(Hl) and S(Hz) share

Consequently, in h 12 reads x from either ’r1 or from another

transaction which, by the same arqument, reads x from another, and so

on, up to T Now, notice that the S(R,) D S(W,) assumption implies

1’ 3 3
that in any serializable history there can be no dead transactions. Hence,




R

by Proposition 1, in any history (n,m',v,S8) equivalent to h we must

also have ' (Nl) < ﬂ'(wz) . The other two cases are settled very

similarly.

It turns out that the rest of the classes of histories discussed
previously have a considerably simpler structure under the assumption

that S(Hj) E_S(Rj). We show below, without proofs the corresponding

diagram.

-
QsSsR o1

P3 @J

Figure 9

Under a different restriction on §, the class SSR coincides with SR.

THEOREM 8. Suppose that in a history he= (n,7,V,S) there is a

subset X = (xl,x.,,....xn} € Vv such that for j=1,2,...,n we have

“

(a) XC-_:_S(Rj). (b) xjfsmi) if and only if i=3. Then h |is

serializable if and only if h € SSR.

Sketch of Proof. Imagine that the variable 'j is a Boolean sig-

nalling whether transaction ‘rj has completed. Therefore, if Tj completed

in h Dbefore 'r" started, the same must hold in any other history equivalent

to h. o
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6, SCHEDULERS OF HISTORIES

The practical importance of the classes of histories 2PL and P3
discussed in Section 4 stems from the fact that they are known to
correspond to simple schedulers. A scheduler for a class of histories
(to be defined formally below) is generally an algorithm that takes as
an input an arbitrary history--possibly non-serializable--and returns a
history which is the "closest" to the given one among those belonging to
the class. If the class is a subset of SR, therefore, the scheduler
guarantees that its output history is serializable. Such a scheduler
can be used in the serializability component of the database management
system. Of course, in practice one would expect that a scheduler operates

on-line and is reasonably efficient.

The history-input of the scheduler is the sequence of arriving
user requests. The output of the scheduler {s the actual execution
sequence. The basic fact that makes our approach very different from
previous work on concurrency control which was motivated by operating
systems (e.g., the notion of determinacoy of ([CD]) 1s that the supplier
of this input history is a population of users, each user being unaware
of the actions of the others. This implies that the order of arrival
of these requests has no semantic content whatsoever, and therefore
the scheduler is not bound to produce an output which is equivalent
(or related in any prescribed way) to the input. In fact, the operation

of the scheduler becomes interesting and important exactly when the

scheduler must necessarily transform the input to an inequivalent output,

because the {nput {8 non-serializable, say.




There are, however, certain performance criteria that the input-
output mapping of a scheduler should satisfy. For example, a trivial
scheduler which guarantees serializability i{s the one that outputs
only serial histories. This is, however, too restrictive a mechanism
to be of practical value. Intuitively, the richer the output class,
the more powerful the scheduler, because a less restrictive class
of histories will require less reshuffling of the operations and will
cause fewer and shorter unnecessary delays. Ideally, we would like to
have a serialiser, whose output spans all of SR. Unfortunately, we
shall soon see that the existence of such a practically useful device

i3 very improbable.

DEFINITION 8. The metric d(.,.) on the set H is defined as
follows:

a. 4((n,7,V,S), (n,0,V,S)) = n-max{j:n t(i) = o 1), Y

b. d((m,7,v,8), (n,p ,W,T)) = = if any one of my¢n, VW,

SYT holds.

The distance between two histories defined on the same set of
transactions is therefore n minus the length of their longest common
prefix. Notice that d(.,.) satisfies the metric axioms. A variety of

other metrics would suffice for what follows.

DEFINITION 8 (continued). Let C be a non-empty subset of H.

A scheduler for ¢ is a function A_:H*C such that

a(h,A_ (b)) = min{d(h,h*) :NEC)

T —
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Thus, A_ can be thought of as projecting H onto C under the
metric d(.,.). Notice that AC(h) and h will not be equivalent in
general. The metric d(.,.) requires that AC leaves histories in C
intact, and, in fact, it leaves intact as long prefixes of arbitrary

histories as possible.

Let us restate now the assumptions of our model of schedulers

(a). A scheduler Ac minimizes the d-distance between its input
and {ts output. This intuitively means that the scheduler operates on-
line, and, furthermore, that it acts in an optimigt{» way: As long as
the history seen so far could possibly be extended to a correct history
(here by "correct history" we mean one which the scheduler, in its lim-
ited sophistication, recognizes as correct, or, equivalently, an ele-
ment of C = AC(H» the scheduler does not intervene to rearrange read
and write requests. As a corollary, {f the scheduler is fed with its
own output, it leaves {t intact; it is therefore idempotent, or a projection.

This {8 a quite reasonable assumption to make. Although we cannot
totally exclude the possibility of schedulers that operate otherwise
(for example, anticipating future requests that will make the history
non-serfalizable), all schedulers proposed in the past satisfy this
assumption. Any scheduler implemented by natural constructs such as locks
[KP], [EGLT] or queues has this property.

(b). Among all histories in C that have the longest possible common
prefix with the input history, Ac selects any one as its output. Clearly,
in practice this choice would be made so as to minimize some more refined

metric d'. However, the results obtained below for our weaker metric
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d' would apply to more relaxed metrics, too,

We say that A_ is an efficient acheduler if A, is computable in
polynomial time. Our goal in this Section is to understand which classes
of histories have efficient schedulers. It is tempting to conjecture
that if a class is in P, then it has an efficient scheduler. This

conjecture is not plausible, because, consider the following:

EXAMPLE. Let E= (hehg :h. is serial, and h=h.}.
Obviously, E can be recognized in polynomial time; the algorithm
involves splitting a given history in two halves, testing whether the

second half is serial, and whether the second half is equivalent to the




first. However, it is also easy to see that E oomot have an efficient
scheduler, unless P=NP. Suppose that E has an efficient scheduler
AE' Then we could test whether an arbitrary history h 1is serializable
by first computing Az(h.h). and then checking whether A!(h.h) starts
with h. Since AE is supposed to leave unchanged as long prefixes of
its input as possible, it will alter the first half of heh only if h

is not serializable. Since serializability is known to be NP-complete, E

cannot have an efficient scheduler unless P=NP, o

Our next result essentially says that efficiently recognizable
classes have efficient schedulers, unless they are as pathological as
our example E above. Let h= (n,7,V,S) be a history, considered now
as a string of symbols representing n,V,S and the permutation .

A prefir of h is an initial segment of this representation, containing
the encoding of n, V, S, as well as an initial part of T--i.e.,
<n-1(1).ﬂ-1(2).....ﬂ-l(j)> for some 0 < j < 2n. If C is a class of

histories, then PR(C) 1is the set of all prefixes of all histories in C.

THEOREM 9. Let C be a subset of H. C has an efficient scheduler

if and only if PR(C) €EP.

Proof. Suppose that C has an efficient scheduler AC. In order
to determine whether a string g is a prefix of a history h€C we may
act as follows: we first verify that g contains encodings of n, V,
and 8§, together with an initial segment 0 of a permutation m of tn.
We then generate a completion O of 0 by juxtaposing to o the

symbols nj such that Rj but not 'j is present in 0, and then the
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strings Rj"j for all j's such that neither Rj nor "j appears in
0. We then calculate h'-AC((n,E,V,S)). It is straightforward to see
that ¢ is a prefix of h' if and only if gE€PR(C). Thus we can
efficiently determine whether g€ PR(C).

Por the other direction, suppose that PR(C) €P. Based on the
recognition algorithm for PR(C) we design an efficient scheduler: Ac
shown in Figure 10, AC computes Ac(h) = (n,”,v,S) by determining P
element-by-element. It should be obvious that Ac operates as

prescribed within a time bound of O(nZC(n.Ivl)), where Ci(n,|v]) is

the complexity of recognizing PR(C). The Theorem follows. o

It is now easy to link the discussion of Sections 3 and 4 with the

existence of efficient schedulers. We get two types of results:

COROLLARY 1. Unless P=NP, SR has no efficient scheduler. o

COROLLARY 2. The classes S, 2PL, P3, Q, DSR have efficient

schedulers.

Proof. We have shown that these sets are in P; it is usually
straightforward to show that their sets of prefixes are also in P (this
is not a general property of P; there are languages in P that have
non-recursive sets of prefixes). As an illustration, we will sketch a
proof that PR(P3) €P, First, given an encoding of n, V, S, and a
seqment o of 7, we first compute from S the digraph F of the guardian

relation among {Tl,....Tn}. We next make sure that whenever T, is a

3
guardian of T‘ and o(wj) is defined, then either o(wx)< o(w’). or
p(R‘)> o(nj). or o(R*) is undefined. Finally, we make sure that ©p




Scheduler Ac

Input: a history h= (n,7,V,S)

Output: a history h'= (n,p,V,S) €EC such that d(h,h') is the

exists.

smallest possible, if such an h'

begin

if (n,< >,v,S) £ PR(C) then retwem

comment < > is the empty permutation;

elae begin

pi=< >y

begin

done: = false;

for i=j, j+#1,...,2n do wuntil done

if (n,<o.w°1(1)>.v,s)€pn(c) then

begin

done: = true;

interchan e w’l(i) and '-l(j);

o
pt = <p,m (1)>;

end;

end;
end
retum

end

.
»

(n,0.V,8):

R
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can be completed in a manner not violating P3. It turns out that this
amounts to verifying that the restriction of F to the transactions
that are active (i.e., O(Rj) is defined but D(HJ) is not) is acyclic
(a discussion of this part follows the proof). Hence we have an

efficient algorithm for PR(P3). o

We show in Figure 11, without proofs, stylized versions of efficient
schedulers for the classes 2PL (l11b). P3 (lla), DSR and Q (llc; for Q
we also include the two statements labeled (). Besides serialigability,
these algorithms must also guarantee the absence of deadlocks. The
1ssue of deadlocks appears to be orthogonal to that of serializability,
and, in fact, clever serializability methods are known to introduce
increased danger of deadlocks of the "circular waiting" variety (([CD],
pp.90-00). A unified treatment of serializability and deadlocks in a
restricted data model is attempted in (SK]. In all cases of interest to
us, deadlocks can be prevented by testing a dynamically changing deadlock
graph for acyclicity. For example, in two-phase locking deadlock can
occur if a number of transactions have each locked their read-set, and
are awaiting for each other to release their locks. Hence, in this case
the deadlock graph has variables as nodes, and has an arc from x to y
if and only if some transaction currently on phase 1 reads x and writes
y. In P3 the deadlock graph is the restriction of the guardian relation
to the currently active transactions--this was mentioned in the proof of
Corollary 2 to Theorem 9. Finally the deadlock graph in DSR (resp., Q)

has as nodes the active transactions and includes the arc (Ti'T 3 Az

3

and only if there is a path from Ti to Tj in D(h)-=resp. D'(h)--

and S(I‘) DS(Nj) 2P




Our notation in Figure 11 assumes that the process Rj or "j is

initiated as soon as a corresponding read or write requests arrive.
We use constructs such as when (denoting the awaiting for a condition)
and tbegin...tend (bracketing statements that are to be executed
indivisibly). It should be obvious that these algorithms can be

implemented deterministically and efficiently on any standard model of

computation.
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process Rj
wien the deadlock graph with Tj is acyclic do
output (Rj)
process W j
when ‘rj is not the guardian of an active transaction do
output (H‘)
(a)

proceasa Rj
wién the deadlock graph with T) is acyclic and
no variable is S(Rj) is read-locked do
tbegin
write-lock all variables in S(R );

3

output (Rj)

tend;

when a process w, with S(Hi)f1S(Rj) #® or i=3 has been initiated and

no variable in S(Hj) - S(Rj) is writelocked o

tbegin

write-lock and read-lock all variables in s(wj);

un-write-lock all variables in S(Rj) - S(wj).
iend
proceas wj
when R, has terminated do

tbegin output (wj)

unlock all variables in S{Nj)
1 tend
(b)




s

¥
¥
E

ol =

process Rj

declare Ly eequence of symbols in I uig)

comment Lj contains all Ri or H‘ such that ‘r1 is reachable by a
path from T’ in D (resp. D'), up to this point;

when the deadlock graph is acyclic and for no Ti - 1‘k

with S(R)) nswi) g2, S(Rj) nsmk) ¢ P is wiGLk do
tbegin

output (Rj)

b.sw (R}

j b
§ Ns(w

add Rj to all Lk containing w with S(Rj) S( i) re

Q: add Rj to all L containing f

3

tend

process W

b
when the deadlock graph contains no arc (Ti'Tj) do
thegin
output (Hj)
add "j to all Lk containing O such that S(Hj)f\s(o) o

Q: add f to all Lk containing Rj or uj
set Lj: =0
tend

(c)

Figqure 11
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7. DISCUSSION

We shall consider extensions of our results in three directions:
general multi-step transactions, interpreted transactions, and

distributed databases.

7.1 Multi-step Transactions

We shall briefly discuss how our entirc development of Sections 2
through 6 can be easily extended to a far more general multi-step model of
transactions. We consider transactions that consist of sequences of
steps; each step may involve both reading and writing. The values written must
be considered as uninterpreted functions of all variables read at the
present or previous stens of the same transaction. Our definition of
liveness now applies to individual atepe of transactions. No further
modifications are necessary for stating the analog of Proposition 1.

Serializability is obviously NP-complete in this model, as it
subsumes ours. Assuming that no transaction reads intermediate results
of another or reads two different versions of the same variable at two

different steps--in which case the history is not serializable--Lemma 2

is also valid. The four serfalizability principles discussed in Section &
remain virtually unchanged--in fact, two-phase locking was initially pro-
posed for a similar model in [EGLT]. For another example, we shall describe
in a somewhat more detailed manner the generalized P3 class of histories.

In the multi-step model a step s of a transaction can be an (7,7)-guardian




of another transaction, where 1<3j are steps. This means that s
interacts with i--i.e., either its write set includes variables of i,
or vice-versa--and there is a chain of interactions from s to j. If
this is the case, s 1is not allowed to occur between i and j. This
P3 protocol always yields DSR (and hence serializable) histories.

For the classes DSR and Q, we have similar graphs D(h) and D'(h). An

arc (Ti'Tj) is in D(h) if a step of Ti interacts with a subsequent

step of Tj. For D'(h), it may just be that the last step of 'ri
precedes the first step of Tj' The acyclicity of D(h) again guarantees
serializability, and that of D'(h) strict serializability. Hence, these
remain two most general serializability techniques, subsuming two-phase
locking and P3, in this general setting, too.

Finally, it is easy to see that the results of Section 6--the
necessary and sufficient condition for the existence of efficient
schedulers and its corollaries--apply even more directly to multi-step
histories. We hope that the reader is by now convinced that introducing
general multi-step transactions would have resulted in an unmanageably

cumbersome notation but in very few new important ideas.

7.2 Interpreted Transactions

A significant departure from our model would be to look more closely
into the computations performed by the transactions and exploit their
details for studying serializability--or correctness, in general. If
only syntactic information about the transactions is available (e.g., the

read- and write-sets) then serializability can be formally proved to be




the right concurrency concept (KP]. If, however, semantics of the

functions performed, or even the integrity constraints, are known, then

it may be the case that more liberal concurrency principles than seriali-
zability are applicable. An example is the correctness theory proposed

in [Lal], where the concurrency control mechanism takes into account in-
formation about the semantics and integrity constraints supplied by correct-
ness proofs of the individual transactions. The extent to which such
information is helpful {s {nvestigated i{n [KP].

It is doubtful whether complete semantic {nformation can be used
effectively for concurrency control. Any reasonably complex domain of
interpretation (e.g., arithmetic) would soon make the serializability
problem undecidable. There should be, however, ways to use partial
semantic information {n order to improve our understanding of seriali-
zability. One possibility is to use the fact that two transactions
perform precisely the same function: one of the i{mplications is that they
commute. It is not too hard to see that this adds nothing to the modei
developed thus far. Incidental!ly, this allows us to extend our original
model so as to permit multiple occurrences of a transaction in a history.

Another possibility would be to selectively consider certain very
simple transactions to be interpreted. A pood example of a very common
transaction that performs a well-understood function is the
a transaction that reads x and later records its value at y. Serializa-

bility become trickier. For example the history

h = Rllx]R2R3[x1N2(xl'3lY’R‘lY1H4[x1R5[x1N5[21H1(z)




is not serializable in our ordinary sense, but becomes equivalent to the
serial history hs-'rs'rl'rz'x'}'r‘ once we assume that transactions 3 and 4
are copiers. Proposition 1 becomes somewhat more complex in the
presence of copiers. However, it is interesting to note that if copiers
are restricted not to read variables from other copiers, then the
introduction of copiers adds no strength to our model, and Proposition 1

and Lemma 2 remain unchanged under this assumption. This remark plays

an important role in the next topic of our discussion.
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7.3 Distributed Databases

There is a large body of literature aiming at the understanding of
the quite elusive notion of distributed computing (see, for example ([Lall).
Distributed databases have inherited some of the intricacies of this
area (RG], [(Th]. We shall limit our discussion to the case of two
complete copies of the database in different locations, although there i
are difficulties which first appear in the cases of three copies or of
selective redundancy [BSRG]. A major problem is, what happens when a
transaction is run in one location, thus changing only one of the two
copies. A simple technique for solving this would be to send an wpdate
message [BGRP] to the other location as soon as the transaction has

completed. We have therefore a sequence of genuine transactions and

update messages running in the system, and we can thus view the two

copies of the database as a single database--think of the two copies of
the variable x as two variables x, and x,-
A difficulty npp;;rs when we try to define a history. The distributed

nature of our computation, the communication delays and imperfect clocks

make temporal priority--on which our ordinary notion of history was

based--less tangible. The observation here is that mistakes in our *

arrangement of the events which are due to the above factors preserve

history equivalence. Hence, we can put together a history--the global

log of [BGRP)--as long as it is consistent with local priorities and

arrivals of messages. Now, the update messages are in fact just copiers,
and they only read variables that were updated by ordinary transactions.

Hience the last remark of the previous Subsection is applicable, and the
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serializability problem has been reduced to the one already studied! Of
course, we are not just looking for serializability, but for the
existence of an equivalent serial history in which an update message
immediately follows the corresponding transaction. This, however, does
not change the essence of the task. All our special case results hold
with very minor modifications,

What is considerably more complex in the distributed context is

the subject of schedulers. There is no obvious neat way to compile
syntactic restrictions on the global history into distributed algorithms
that achieve them. It therefore appears that distributed history
schedulers must concern themselves with the details of the underlying
model of distributed computation in order to implement the intended
serializability principle; the formidable algorithms of [Th] and [BSRG]
illustrate this point. Nevertheless, it is still natural to conjecture
that the more gencral ideas related to the classes DSR and Q would

prove advantageous in the distributed environment as well.
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7.4 Open Problems

We have proposed a formalism for the concurrency control problem for
databases. There are two aspects of this formalism that may limit its
applicability, and must therefore be modified in a second attempt. One
is our basic assumption, manifested throughout the paper, that the syntactic

description of all tranmsactions to occur in the history is known to the

scheduler a priori. It i{s not clear how to remove this assumption, and
still retain the wealth of available solutions. One way would be to have, r

following (BSRG)], a certain number of prototype transactions--or alagsee -~

to one of which any arriving transaction can be matched. Another way out
would be to adopt only trangaction-iriven concurrency controls. Two-phase
locking (EGLT] {s an example of such a concurrency control, and so would
be any other locking scheme. The limitations of such approaches are
studied in [KP]. On the other hand, {t {s possible that variants of the

schedulers presented here could also be i{mplemented in a transaction-driven

manner .

Secondly, our way of evaluating the performance of schedulers {s also
in need of an improvement. We propose only a qualitative measure of the
performance of a scheduler--namely the set of all output histories. This
leads to only a partial order of schedulers. This was shewn to be a

reasonable and useful approximation of realitv when the goal is to derive

indicative results or compare general principles of serializability. It {is
clear, however, that a more concrete measure of performance is needed for

) more practical applicatifons. One promising direction would be to somehow
count the total number of delays {mposed on requests-~at a first approximation,

the number of transaction steps that cannot execute immediately upon arrival.




B

This would be a refinement of our measure: our measure, roughly speaking,
assigns a perfect score to all histories that remain the same, and zero
score to all histories that are changed, however small the change. A

more refined measure might even put to test some of our assumptions, like
the "optimistic scheduler" assumption (Section 6): in certain cases it

may be preferable to intervene and modify slightly the history, when
serializable completion becomes extremely unlikely, although not impossible.
Naturally, adopting a more concrete measure of performance for schedulers
will most likely require the introduction of specific and pragmatic details
of the particular application, and the overall approach may have to be
probabilistic.

By considering only serializability as our notion of correctness we
have somehow limited our scope. Examples of concurrency control techniques
more general than serfalizability can be found in [Lal] and [KL]. They
are arrived at by assuming that the scheduler has more than syntactic in-
formation about the transaction svstem that it handles--e.g., semantic
information or understanding of the integrity constraints. It i{s pointed
out in [KP] that serfalizability is just one point in the trade-off
between information and performance of schedulers. However, we feel that
there is something natural about the use of syntactic information for con-
currency control, and the {mportance of concurrency techniques stronger
than serializability i{s of limited practical --alue.

Finally, we recall two other problems that are left open here: the
complexity of recognizing the class SSR, and developing techniques for

! designing distributed schedulers from syntactic specificarions.
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